
tspop
Release 0.1

Georgia Tsambos

Apr 13, 2023

CONTENTS

1 Developer installation 3

2 Running the tests 5

3 Compiling the documentation 7

4 Simulation setup 9
4.1 msprime simulations . 9
4.2 SLiM simulations . 12
4.3 When should you add the census? . 12

5 Basic usage 15
5.1 Example: calculating global ancestry . 17

6 The ideas behind tspop 19

7 API 21

8 About tspop 25
8.1 First steps . 26

Python Module Index 27

Index 29

i

ii

tspop, Release 0.1

tspop is available on PyPi for installation with pip:

pip install tspop

If you absolutely must use the most up-to-date code, you can do it by cloning the git repository,

git clone https://github.com/gtsambos/tspop

navigating into the root directory,

cd tspop

and installing it like this:

pip install .

CONTENTS 1

https://pypi.org/

tspop, Release 0.1

2 CONTENTS

CHAPTER

ONE

DEVELOPER INSTALLATION

To install tspop in addition to the packages needed to develop and run tests, perform the first two steps above, then run
the following command:

pip install -e .[dev]

I recommend developing tspop in a virtual environment like a [conda environment](https://conda.io/projects/conda/
en/latest/index.html).

3

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/index.html

tspop, Release 0.1

4 Chapter 1. Developer installation

CHAPTER

TWO

RUNNING THE TESTS

The test suite uses the [pytest](https://docs.pytest.org/en/7.2.x/) module.

pytest tests

You can run specific classes or tests in specific test files:

pytest tests/test_tspop.py::TestIbdSquash

To get printed output from the tests, use the s flag:

pytest -s tests/test_tspop.py::TestIbdSquash.test_basic

pytest tests/test_tspop.py::TestIbdSquash.test_basic

5

https://docs.pytest.org/en/7.2.x/

tspop, Release 0.1

6 Chapter 2. Running the tests

CHAPTER

THREE

COMPILING THE DOCUMENTATION

Note: Finish later.

cd docs
make clean
make html

7

tspop, Release 0.1

8 Chapter 3. Compiling the documentation

CHAPTER

FOUR

SIMULATION SETUP

Population-based ancestry is only well-defined with reference to some particular time. For instance, suppose that my
maternal grandmother belonged to Population A, and my mother migrated into Population B. I inherited some of my
genome from these ancestors – but which population did it come from? The answer depends on a point in time – and
in particular, on whether we are interested in ancestry one or two generations ago.

By default, msprime and SLiM do not retain information about the ancestry of individuals at each timepoint in the
simulated history. The rest of this page explains how to rectify this.

4.1 msprime simulations

Let’s make this more concrete with an example.

Suppose there was an admixture event between two populations, RED and BLUE, that produces an admixed popula-
tion ADMIX. The admixture happened 100 generations ago. These two populations split from a common ancestral
population, ANC. The split was 1000 generations ago.

Here’s a msprime.Demography object describing this demographic scenario:

9

tspop, Release 0.1

import msprime

pop_size = 500
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(

time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_population_split(

time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

We’ll simulate a 100kb genomic region for two diploid individuals from the admixed population ADMIX:

ts = msprime.sim_ancestry(
samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
demography=demography,
random_seed=1011,
sequence_length=100000,
recombination_rate=3e-8

)

Have a look at this msprime tutorial if you need a refresher on this syntax.

By default, the tree sequences generated by msprime will only show the ancestral haplotypes that happen to be coales-
cent ancestors. On their own, this is not sufficient to get information about population-based ancestry at all locations
along the genome.

For instance, here is the first tree in the tree sequence generated by the simulation above. This tree describes the
genealogical relationships between the samples on the leftmost part of the simulated genome:

Note that this code will only work in a Jupyter notebook
from IPython.display import SVG

colour_map = {0:"red", 1:"blue", 2: "purple", 3: "gray"}
node_colours = {u.id: colour_map[u.population] for u in ts.nodes()}
tree = ts.first()
SVG(tree.draw(node_colours=node_colours))

From this, we see that samples 1, 2 and 3 have ancestry with the red population at this location in their genomes.
However, we cannot be sure about the provenance of sample 0 based on the information displayed here. At this genomic
location, sample 0 is very deeply diverged from the other samples. In fact, it is so deeply diverged that it’s most recent
coalescence with the other samples (at node 12) pre-dates the ‘split’ between the red and blue ancestral populations. To

10 Chapter 4. Simulation setup

https://tskit.dev/msprime/docs/stable/ancestry.html

tspop, Release 0.1

see which population it has inherited from at this location, we’d need to ‘mark’ one of the more recent (non-coalescent)
ancestors of sample 0 to retain.

The msprime.Demography.add_census()method (documented here) is a special demographic event that we added
into msprime to do precisely this. More specifically, add_census records a node on all lineages that are extant at some
user-specified time in the simulation. This is needed to simulate complete information about local ancestry.

The code below is the same that we specified above, but with a census event at time=100.001. Note that this time is
just before the admixture event creating population ADMIX.

Make the Demography object.
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(

time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_census(time=100.01) # Census is here!
demography.add_population_split(

time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

Simulate.
ts = msprime.sim_ancestry(

samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
demography=demography,
random_seed=1011,
sequence_length=100000,
recombination_rate=3e-8

)

Here is a diagram of the first tree in the tree sequence returned by this simulation.

Note that there is now a node on every branch in the trees at the time specified in our census event. (In the tree
above, these are nodes 5, 6 and 7). This is the information required to extract full information about population-based
ancestry at all genomic locations in all samples. For instance, we see here that sample 0 has local ancestry with the
blue population, while the other samples have ancestry with the red population.

4.1. msprime simulations 11

https://tskit.dev/msprime/docs/stable/api.html?highlight=add_census#msprime.Demography.add_census

tspop, Release 0.1

4.2 SLiM simulations

Use a treeSeqRememberIndividuals() call to select census individuals.

initialize() {
initializeTreeSeq();
initializeMutationRate(0);
initializeMutationType("m1", 0.5, "f", 0.0);
initializeGenomicElementType("g1", m1, 1.0);
initializeGenomicElement(g1, 0, 99999);
initializeRecombinationRate(3e-8);

}
1 early() {

sim.addSubpop("p3", 500); // "ANC"
}
1000 early() {

sim.addSubpop("p0", 500); // "RED"
sim.addSubpop("p1", 500); // "BLUE"
p0.setMigrationRates(p3, 1.0);
p1.setMigrationRates(p3, 1.0);
p3.setSubpopulationSize(0);

}
1899 late() {

// The 'census' event:
// note these individuals have time 101 in the output
sim.treeSeqRememberIndividuals(sim.subpopulations.individuals);

}
1900 early() {

sim.addSubpop("p2", 500); // "ADMIX"
p2.setMigrationRates(c(p0, p1), c(0.5, 0.5));

}
1901 early() {

// admixture happens in a single generation
p2.setMigrationRates(c(p0, p1), c(0, 0));

}
2000 late() {

sim.treeSeqOutput("slim.trees");
}

4.3 When should you add the census?

4.3.1 msprime simulations

You should specify the census event at a time when

1. All of the relevant ancestral populations are active.

2. It is unlikely that all samples have coalesced anywhere.

3. There are no other coalescent nodes.

In the example above, condition 1 suggests that we should choose a census time between 100 and 1000 generations in
the past. Before this time, the populations did not ‘exist’, and after this time, the ancestors of the sample were already

12 Chapter 4. Simulation setup

tspop, Release 0.1

admixed. To make condition 2 as likely as possible, we should choose a time closer to 100 and 1000. The chosen
time of 100.01 satisfies both of these conditions so far. Since we are running a (default) coalescent simulation here,
condition 3 is unlikely to be an issue.

Note: Condition 3 is most important when you are running a DTWF simulation. In this situation, you want to avoid
placing the census nodes ‘on top’ of the existing ancestors that are generated at discrete times, so a non-integer time is
most suitable here.

4.3.2 SLiM simulations

You’ll usually want to place the treeSeqRememberIndividuals() call in the generation before admixture begins.

4.3. When should you add the census? 13

tspop, Release 0.1

14 Chapter 4. Simulation setup

CHAPTER

FIVE

BASIC USAGE

Note: Ensure that your simulated tree sequence follows the guidelines mentioned in Simulation setup.

Here’s a sample tree sequence simulated with msprime. Note the census time at 100.01:

import msprime

pop_size = 500
sequence_length = 1e7
seed = 98765
rho = 3e-8

Make the Demography object.
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(

time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_census(time=100.01) # Census is here!
demography.add_population_split(

time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

Simulate.
ts = msprime.sim_ancestry(

samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
demography=demography,
random_seed=seed,
sequence_length=sequence_length,
recombination_rate=rho

)

Apply tspop.get_pop_ancestry() to get a tspop.PopAncestry object.

import tspop

pa = tspop.get_pop_ancestry(ts, census_time=100.01)

15

tspop, Release 0.1

Use print to see a summary of the information held within the object.

print(pa)

> PopAncestry summary
>
> Number of ancestral populations: 2
> Number of sample chromosomes: 4
> Number of ancestors: 118
> Total length of genomes: 40000000.000000
> Ancestral coverage: 40000000.000000

The ancestral information itself is inside two tables. The tspop.PopAncestry.squashed_table shows tracts of
ancestry:

st = pa.squashed_table
print(st)

> sample left right population
> 0 0 0.0 419848.0 0
> 1 0 419848.0 483009.0 1
> 2 0 483009.0 1475765.0 0
> 3 0 1475765.0 2427904.0 1
> 4 0 2427904.0 3635390.0 0
>
> 55 3 7369409.0 7596783.0 1
> 56 3 7596783.0 8289015.0 0
> 57 3 8289015.0 8918727.0 1
> 58 3 8918727.0 10000000.0 0

The tspop.PopAncestry.ancestry_table shows a superset of this information: tracts of ancestry, and the ancestor
at the census time who contributed each tract. Each row of the squashed table above can be obtained by ‘gluing together’
rows of the ancestry table.

at = pa.ancestry_table
print(at)

> sample left right ancestor population
> 0 0 0.0 33027.0 74 0
> 1 0 33027.0 155453.0 33 0
> 2 0 155453.0 290542.0 46 0
> 3 0 290542.0 419848.0 18 0
> 4 0 419848.0 483009.0 83 1
>
> 133 3 8672850.0 8849756.0 95 1
> 134 3 8849756.0 8918727.0 131 1
> 135 3 8918727.0 9165035.0 44 0
> 136 3 9165035.0 9176562.0 47 0
> 137 3 9176562.0 10000000.0 58 0

Both the tspop.PopAncestry.squashed_table and the tspop.PopAncestry.ancestry_table are pandas
dataframes, so can be analysed using standard operations.

16 Chapter 5. Basic usage

tspop, Release 0.1

5.1 Example: calculating global ancestry

For instance, we could get the sum of all regions inherited from an ancestor in population 0 like this. We’ll first subset
the tspop.PopAncestry.squashed_table to only those tracts inherited from an ancestor in population 0:

st0 = st[st.population == 0]
print(st0)

> sample left right population
> 0 0 0.0 419848.0 0
> 2 0 483009.0 1475765.0 0
> 4 0 2427904.0 3635390.0 0
> 6 0 4606954.0 6277367.0 0
>
> 52 3 7043989.0 7134130.0 0
> 54 3 7362300.0 7369409.0 0
> 56 3 7596783.0 8289015.0 0
> 58 3 8918727.0 10000000.0 0

By summing the tract lengths in the rows, we get the length of the tracts from population 0:

pop0_lengths = sum(st0.right - st0.left)
print(pop0_lengths)

> 23278398.0

Dividing this by the sum of the genomic lengths in the tspop.PopAncestry object gives the proportion of the genomes
that were inherited from individuals in population 0, with reference to the ancestors present at the census time:

print(pop0_lengths/pa.total_genome_length)

> 0.58195995

5.1. Example: calculating global ancestry 17

tspop, Release 0.1

18 Chapter 5. Basic usage

CHAPTER

SIX

THE IDEAS BEHIND TSPOP

Simulated tree sequences contain richly detailed information about local ancestry: any sample node that descends from
a node in a given population at some genomic location will have ancestry with the population at that location.

However, for realistically large and complicated simulations, it is difficult to recover this information from the overall
genealogies. A visually intuitive way to do this is to locate each sample haplotype on each tree and trace a path up the
tree until an ancestral node from one of the populations of interest is reached.

Unfortunately, this approach will be quite inefficient. Any genealogical feature that is shared between different haplo-
types, or across different regions of the genome, will be processed separately for each sample and each tree. Given the
substantial correlations in genealogy that typically exist between individuals, and across genomes, this approach would
require many repetitive operations.

To extract local ancestry from a tree sequence, there are several essential steps:

1. Make a record of which nodes belong to ancestors in the populations of interest.

2. For each genomic segment belonging to a present-day sample, trace a path upwards through the trees to determine
which of the nodes in the first step are ancestral to each subsegment.

3. Look up the population p that each ancestral node a belongs to. Then any segments that descend from a have
local ancestry with population p.

Step 2 is potentially complicated and inefficient. This is the operation performed efficiently by the link-ancestors method
in tskit. Essentially, link-ancestors performs a ‘simplification’ of the tree sequence so that relationships between samples
and ancestors of interest are shown directly.

Note: Algorithmic details are in the preprint.

19

tspop, Release 0.1

20 Chapter 6. The ideas behind tspop

CHAPTER

SEVEN

API

class tspop.PopAncestry(left, right, population, ancestor, child, sample_nodes, sequence_length)
Bases: object

In most cases, this should be created with the tspop.get_pop_ancestry() method. An object holding local
ancestry information, and various summaries of that information.

Parameters

• left (list(float)) – The array of left coordinates.

• right (list(float)) – The array of right coordinates.

• population (list(int)) – The array of population labels.

• sample_nodes (list(int)) – The list of IDs corresponding to sample nodes.

• sequence_length (float) – The physical length of the region represented.

ancestry_table

A pandas.DataFrame object with column labels sample, left, right, ancestor, population. Each row
(sample, left, right, ancestor, population) indicates that over the genomic interval with coordinates
[left, right), the sample node with ID sample has inherited from the ancestral node with ID ancestor
in the population with ID population. Ancestral nodes and population labels are taken from the specified
census time.

ancestry_table_write_csv(outfile, **kwargs)
Writes the ancestry table to a csv file.

param outfile: The name of the output file. type: str param kwargs: other keyword arguments for pan-
das.to_csv

calculate_ancestry_fraction(population, sample=None)
Returns the total fraction of genomic material inherited from a given population.

Parameters

• population (int) – The index of the population to use.

• sample (int) – A specific sample node.

Returns
the global ancestry fraction.

coverage

The proportion of the total genome length with an ancestor in the tspop.PopAncestry.squashed_table
and tspop.PopAncestry.ancestry_table.

21

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

tspop, Release 0.1

num_ancestors

The number of ancestral haplotypes. Strictly less than or equal to the number of inputted ancestral nodes.

num_samples

The number of provided samples.

plot_karyotypes(sample_pair, colors=None, pop_labels=None, title=None, length_in_Mb=True,
outfile=None, height=12, width=20)

Note: Diploid only for now.

Creates a plot of the ancestry tracts in a sample pair of chromosomes using matplotlib.

Parameters

• sample_pair (list(int)) – a pair of sample node IDs in the PopAncestry object.

• colors (list(str)) – A list of pyplot-compatible colours to use for the ancestral popula-
tions, given in order of their appearance in the tspop.PopAncestry.squashed_table.
If None, uses the default matplotlib colour cycle.

• pop_labels (list(str)) – Ancestral population labels for the plot legend. If None,
defaults to Pop0, Pop1 etc.

• title (str) – The title of the plot. If None, defaults to ‘Ancestry in admixed individual’.

• length_in_Mb (bool) – Whether or not to label the horizontal axis in megabases. Defaults
to True.

• outfile (str) – The name of the output file. If None, the plot opens with the system
viewer.

• height (float) – The height of the figure in inches.

• width (float) – The width of the figure in inches.

Returns
a matplotlib figure.

squashed_table

A pandas.DataFrame object with column labels sample, left, right, population. Each row (sample,
left, right, population) indicates that over the genomic interval with coordinates [left, right), the
sample node with ID sample has inherited from an ancestral node in the population with ID population.
Population labels are taken from the specified census time.

squashed_table_write_csv(outfile, **kwargs)
Writes the squashed table to a csv file.

param outfile: The name of the output file. type: str param kwargs: other keyword arguments for pan-
das.to_csv

subset_tables(subset_samples, inplace=False)
Subsets the ancestry table and squashed table by sample. Note: by default this returns a copy of the original
tables. To overwrite the original tables, set inplace=True. (In this case, the function returns nothing).

Parameters

• subset_samples (list(int)) – The sample nodes to keep.

• inplace (bool) – Whether to overwrite the original tables.

22 Chapter 7. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

tspop, Release 0.1

Returns
The subsetted ancestry table and squashed table (only if inplace=True).

total_genome_length

Sequence length times the number of samples.

tspop.get_pop_ancestry(ts, census_time)
Creates a tspop.PopAncestry object from a simulated tree sequence containing ancestral census nodes. These
are the ancestors that population-based ancestry will be calculated with respect to.

Parameters

• ts (tskit.TreeSequence) – A tree sequence containing census nodes.

• census_time (list(int)) – The time at which the census nodes are recorded.

Returns
a tspop.PopAncestry object

0.0.2: April 2023 - Added subset_tables, ancestry_table_write_csv and squashed_table_write_csv.

0.0.1: July 2022 - Initial release

23

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

tspop, Release 0.1

24 Chapter 7. API

CHAPTER

EIGHT

ABOUT TSPOP

Suppose your genealogical ancestors can be partitioned into distinct populations (represented here by different colours):

This is typically reported as global and local ancestry:

Using msprime and SLiM, you can simulate under detailed models of migration and population structure. This is the
documentation for tspop, a lightweight package that makes it easier for you to extract information about population-
based ancestry from these simulations.

Note: Add link to preprint/note when it’s written.

Under the hood, tspop relies on

• the tskit package to efficiently extract the population-based information in the simulated datasets.

• the pandas package to provide user-friendly, interpretable output.

25

tspop, Release 0.1

8.1 First steps

• Head to the Installation page to install tspop on your computer.

• Population-based ancestry is not well-defined without some notion of a census time. Read Simulation setup to
see how to design your simulations to ensure they will work with tspop.

• Flick through the examples to see tspop in action.

• Check out The ideas behind tspop to learn more about why tspop is so efficient.

26 Chapter 8. About tspop

PYTHON MODULE INDEX

t
tspop, 21

27

tspop, Release 0.1

28 Python Module Index

INDEX

A
ancestry_table (tspop.PopAncestry attribute), 21
ancestry_table_write_csv() (tspop.PopAncestry

method), 21

C
calculate_ancestry_fraction()

(tspop.PopAncestry method), 21
coverage (tspop.PopAncestry attribute), 21

G
get_pop_ancestry() (in module tspop), 23

M
module

tspop, 21

N
num_ancestors (tspop.PopAncestry attribute), 21
num_samples (tspop.PopAncestry attribute), 22

P
plot_karyotypes() (tspop.PopAncestry method), 22
PopAncestry (class in tspop), 21

S
squashed_table (tspop.PopAncestry attribute), 22
squashed_table_write_csv() (tspop.PopAncestry

method), 22
subset_tables() (tspop.PopAncestry method), 22

T
total_genome_length (tspop.PopAncestry attribute),

23
tspop

module, 21

29

	Developer installation
	Running the tests
	Compiling the documentation
	Simulation setup
	msprime simulations
	SLiM simulations
	When should you add the census?
	msprime simulations
	SLiM simulations

	Basic usage
	Example: calculating global ancestry

	The ideas behind tspop
	API
	About tspop
	First steps

	Python Module Index
	Index

