

About tspop

Suppose your genealogical ancestors can be partitioned into distinct populations (represented here by different colours):

[image: alternate text]
This is typically reported as global and local ancestry:

[image: alternate text]
Using msprime and SLiM,
you can simulate under detailed models of migration and population structure.
This is the documentation for tspop,
a lightweight package that makes it easier for you to extract
information about population-based ancestry from these simulations.

Note

Add link to preprint/note when it’s written.

Under the hood, tspop relies on

	the tskit package to efficiently extract the population-based information in the simulated datasets.

	the pandas package to provide user-friendly, interpretable output.

First steps

	Head to the Installation page to install tspop on your computer.

	Population-based ancestry is not well-defined without some notion of a census time. Read Simulation setup to see how to design your simulations to ensure they will work with tspop.

	Flick through the Examples to see tspop in action.

	Check out The ideas behind tspop to learn more about why tspop is so efficient.

Footnotes

Installation

tspop is available on PyPi[#1] for
installation with pip:

pip install tspop

If you absolutely must use the most up-to-date code,
you can do it by cloning the git repository,

git clone https://github.com/gtsambos/tspop

navigating into the root directory,

cd tspop

and installing it like this:

pip install .

Developer installation

To install tspop in addition to the packages needed to develop and run tests,
perform the first two steps above, then run the following command:

pip install -e .[dev]

I recommend developing tspop in a virtual environment like a [conda environment](https://conda.io/projects/conda/en/latest/index.html).

Running the tests

The test suite uses the [pytest](https://docs.pytest.org/en/7.2.x/) module.

pytest tests

You can run specific classes or tests in specific test files:

pytest tests/test_tspop.py::TestIbdSquash

To get printed output from the tests, use the s flag:

pytest -s tests/test_tspop.py::TestIbdSquash.test_basic

pytest tests/test_tspop.py::TestIbdSquash.test_basic

Compiling the documentation

Note

Finish later.

cd docs
make clean
make html

Footnotes

[#1]
https://pypi.org/

Simulation setup

Population-based ancestry is only well-defined with reference to some
particular time.
For instance, suppose that my maternal grandmother belonged to Population A,
and my mother migrated into Population B.
I inherited some of my genome from these ancestors – but which population did it come from?
The answer depends on a point in time – and in particular,
on whether we are interested in ancestry one or two generations ago.

By default, msprime and SLiM do not retain information about the ancestry of individuals at each timepoint in the simulated history.
The rest of this page explains how to rectify this.

msprime simulations

Let’s make this more concrete with an example.

Suppose there was an admixture event between two populations,
RED and BLUE, that produces an admixed population ADMIX.
The admixture happened 100 generations ago.
These two populations split from a common ancestral population,
ANC.
The split was 1000 generations ago.

[image: The deme diagram for this simulated example.]
Here’s a msprime.Demography object describing this demographic scenario:

import msprime

pop_size = 500
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(
 time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_population_split(
 time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

We’ll simulate a 100kb genomic region for two diploid individuals from the admixed population ADMIX:

ts = msprime.sim_ancestry(
 samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
 demography=demography,
 random_seed=1011,
 sequence_length=100000,
 recombination_rate=3e-8
)

Have a look at this msprime tutorial[#1] if you need a refresher on this syntax.

By default, the tree sequences generated by msprime will only show the ancestral haplotypes that happen to be coalescent ancestors.
On their own, this is not sufficient to get information about population-based ancestry at all locations along the genome.

For instance, here is the first tree in the tree sequence generated by the
simulation above.
This tree describes the genealogical relationships between the samples on the leftmost part of the simulated genome:

Note that this code will only work in a Jupyter notebook
from IPython.display import SVG

colour_map = {0:"red", 1:"blue", 2: "purple", 3: "gray"}
node_colours = {u.id: colour_map[u.population] for u in ts.nodes()}
tree = ts.first()
SVG(tree.draw(node_colours=node_colours))

[image: The first tree in the tree sequence simulated with the code above]
From this, we see that samples 1, 2 and 3 have ancestry with the red population at this location in their genomes.
However, we cannot be sure about the provenance of sample 0 based on the information displayed here.
At this genomic location, sample 0 is very deeply diverged from the other samples.
In fact, it is so deeply diverged that it’s most recent coalescence with the other samples (at node 12) pre-dates the ‘split’ between the red and blue ancestral populations.
To see which population it has inherited from at this location,
we’d need to ‘mark’ one of the more recent (non-coalescent) ancestors of sample 0 to retain.

The msprime.Demography.add_census() method (documented here[#2]) is a special demographic event that we added into msprime to do precisely this.
More specifically, add_census records a node on all lineages that are extant at some user-specified time in the simulation.
This is needed to simulate complete information about local ancestry.

The code below is the same that we specified above,
but with a census event at time=100.001.
Note that this time is just before the admixture event creating population ADMIX.

Make the Demography object.
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(
 time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_census(time=100.01) # Census is here!
demography.add_population_split(
 time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

Simulate.
ts = msprime.sim_ancestry(
 samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
 demography=demography,
 random_seed=1011,
 sequence_length=100000,
 recombination_rate=3e-8
)

Here is a diagram of the first tree in the tree sequence returned by this simulation.

[image: The first tree in the tree sequence simulated with the code above]
Note that there is now a node on every branch in the trees at the time specified in our census event.
(In the tree above, these are nodes 5, 6 and 7).
This is the information required to extract full information about population-based ancestry at all genomic locations in all samples.
For instance, we see here that sample 0 has local ancestry with the blue population,
while the other samples have ancestry with the red population.

SLiM simulations

Use a treeSeqRememberIndividuals() call to select census individuals.

initialize() {
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(3e-8);
}
1 early() {
 sim.addSubpop("p3", 500); // "ANC"
}
1000 early() {
 sim.addSubpop("p0", 500); // "RED"
 sim.addSubpop("p1", 500); // "BLUE"
 p0.setMigrationRates(p3, 1.0);
 p1.setMigrationRates(p3, 1.0);
 p3.setSubpopulationSize(0);
}
1899 late() {
 // The 'census' event:
 // note these individuals have time 101 in the output
 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals);
}
1900 early() {
 sim.addSubpop("p2", 500); // "ADMIX"
 p2.setMigrationRates(c(p0, p1), c(0.5, 0.5));
}
1901 early() {
 // admixture happens in a single generation
 p2.setMigrationRates(c(p0, p1), c(0, 0));
}
2000 late() {
 sim.treeSeqOutput("slim.trees");
}

When should you add the census?

msprime simulations

You should specify the census event at a time when

	All of the relevant ancestral populations are active.

	It is unlikely that all samples have coalesced anywhere.

	There are no other coalescent nodes.

In the example above, condition 1 suggests that we should choose a census time between 100 and 1000 generations in the past.
Before this time, the populations did not ‘exist’, and after this time, the ancestors of the sample were already admixed.
To make condition 2 as likely as possible, we should choose a time closer to 100 and 1000.
The chosen time of 100.01 satisfies both of these conditions so far.
Since we are running a (default) coalescent simulation here, condition 3 is unlikely to be an issue.

Note

Condition 3 is most important when you are running a DTWF simulation.
In this situation, you want to avoid placing the census nodes ‘on top’ of the existing ancestors that are generated at discrete times,
so a non-integer time is most suitable here.

SLiM simulations

You’ll usually want to place the treeSeqRememberIndividuals() call in the generation before admixture begins.

Footnotes

[#1]
https://tskit.dev/msprime/docs/stable/ancestry.html

[#2]
https://tskit.dev/msprime/docs/stable/api.html?highlight=add_census#msprime.Demography.add_census

Basic usage

Note

Ensure that your simulated tree sequence follows the guidelines mentioned in Simulation setup.

Here’s a sample tree sequence simulated with msprime.
Note the census time at 100.01:

import msprime

pop_size = 500
sequence_length = 1e7
seed = 98765
rho = 3e-8

Make the Demography object.
demography = msprime.Demography()
demography.add_population(name="RED", initial_size=pop_size)
demography.add_population(name="BLUE", initial_size=pop_size)
demography.add_population(name="ADMIX", initial_size=pop_size)
demography.add_population(name="ANC", initial_size=pop_size)
demography.add_admixture(
 time=100, derived="ADMIX", ancestral=["RED", "BLUE"], proportions=[0.5, 0.5]
)
demography.add_census(time=100.01) # Census is here!
demography.add_population_split(
 time=1000, derived=["RED", "BLUE"], ancestral="ANC"
)

Simulate.
ts = msprime.sim_ancestry(
 samples={"RED": 0, "BLUE": 0, "ADMIX" : 2},
 demography=demography,
 random_seed=seed,
 sequence_length=sequence_length,
 recombination_rate=rho
)

Apply tspop.get_pop_ancestry() to get a tspop.PopAncestry object.

import tspop

pa = tspop.get_pop_ancestry(ts, census_time=100.01)

Use print to see a summary of the information held within the object.

print(pa)

> PopAncestry summary
>
> Number of ancestral populations: 2
> Number of sample chromosomes: 4
> Number of ancestors: 118
> Total length of genomes: 40000000.000000
> Ancestral coverage: 40000000.000000

The ancestral information itself is inside two tables.
The tspop.PopAncestry.squashed_table shows tracts of ancestry:

st = pa.squashed_table
print(st)

> sample left right population
> 0 0 0.0 419848.0 0
> 1 0 419848.0 483009.0 1
> 2 0 483009.0 1475765.0 0
> 3 0 1475765.0 2427904.0 1
> 4 0 2427904.0 3635390.0 0
>
> 55 3 7369409.0 7596783.0 1
> 56 3 7596783.0 8289015.0 0
> 57 3 8289015.0 8918727.0 1
> 58 3 8918727.0 10000000.0 0

The tspop.PopAncestry.ancestry_table shows a superset of this information: tracts
of ancestry, and the ancestor at the census time who contributed
each tract.
Each row of the squashed table above can be obtained by ‘gluing together’ rows of the ancestry table.

at = pa.ancestry_table
print(at)

> sample left right ancestor population
> 0 0 0.0 33027.0 74 0
> 1 0 33027.0 155453.0 33 0
> 2 0 155453.0 290542.0 46 0
> 3 0 290542.0 419848.0 18 0
> 4 0 419848.0 483009.0 83 1
>
> 133 3 8672850.0 8849756.0 95 1
> 134 3 8849756.0 8918727.0 131 1
> 135 3 8918727.0 9165035.0 44 0
> 136 3 9165035.0 9176562.0 47 0
> 137 3 9176562.0 10000000.0 58 0

Both the tspop.PopAncestry.squashed_table and the tspop.PopAncestry.ancestry_table are pandas dataframes,
so can be analysed using standard operations.

Example: calculating global ancestry

For instance, we could get the sum of all regions inherited from an
ancestor in population 0 like this.
We’ll first subset the tspop.PopAncestry.squashed_table to only those tracts inherited from an ancestor in population 0:

st0 = st[st.population == 0]
print(st0)

> sample left right population
> 0 0 0.0 419848.0 0
> 2 0 483009.0 1475765.0 0
> 4 0 2427904.0 3635390.0 0
> 6 0 4606954.0 6277367.0 0
>
> 52 3 7043989.0 7134130.0 0
> 54 3 7362300.0 7369409.0 0
> 56 3 7596783.0 8289015.0 0
> 58 3 8918727.0 10000000.0 0

By summing the tract lengths in the rows,
we get the length of the tracts from population 0:

pop0_lengths = sum(st0.right - st0.left)
print(pop0_lengths)

> 23278398.0

Dividing this by the sum of the genomic lengths in the tspop.PopAncestry object gives the proportion of the genomes that were inherited from
individuals in population 0, with reference to the ancestors present at the census time:

print(pop0_lengths/pa.total_genome_length)

> 0.58195995

Footnotes

The ideas behind tspop

Simulated tree sequences contain richly detailed information about local ancestry: any sample node that descends from a node in a given population at some genomic location will have ancestry with the population at that location.

However, for realistically large and complicated simulations, it is difficult to recover this information from the overall genealogies.
A visually intuitive way to do this is to locate each sample haplotype on each tree and trace a path up the tree until an ancestral node from one of the populations of interest is reached.

Unfortunately, this approach will be quite inefficient. Any genealogical feature that is shared between different haplotypes, or across different regions of the genome, will be processed separately for each sample and each tree. Given the substantial correlations in genealogy that typically exist between individuals, and across genomes, this approach would require many repetitive operations.

To extract local ancestry from a tree sequence, there are several essential steps:

	Make a record of which nodes belong to ancestors in the populations of interest.

	For each genomic segment belonging to a present-day sample, trace a path upwards through the trees to determine which of the nodes in the first step are ancestral to each subsegment.

	Look up the population p that each ancestral node a belongs to. Then any segments that descend from a have local ancestry with population p.

Step 2 is potentially complicated and inefficient. This is the operation performed efficiently by the link-ancestors method in tskit.
Essentially, link-ancestors performs a ‘simplification’ of the tree
sequence so that relationships between samples and ancestors of interest
are shown directly.

Note

Algorithmic details are in the preprint.

Footnotes

API

	
class tspop.PopAncestry(left, right, population, ancestor, child, sample_nodes, sequence_length)

	Bases: object[#1]

In most cases, this should be created with the tspop.get_pop_ancestry() method.
An object holding local ancestry information, and various summaries of that information.

	Parameters:

	
	left (list[#2](float[#3])) – The array of left coordinates.

	right (list[#4](float[#5])) – The array of right coordinates.

	population (list[#6](int[#7])) – The array of population labels.

	sample_nodes (list[#8](int[#9])) – The list of IDs corresponding to sample nodes.

	sequence_length (float[#10]) – The physical length of the region represented.

	
ancestry_table

	A pandas.DataFrame object with column labels sample, left, right, ancestor, population.
Each row (sample, left, right, ancestor, population) indicates that over the genomic interval
with coordinates [left, right), the sample node with ID sample has inherited
from the ancestral node with ID ancestor in the population with ID population.
Ancestral nodes and population labels are taken from the specified census time.

	
ancestry_table_write_csv(outfile, **kwargs)

	Writes the ancestry table to a csv file.

param outfile: The name of the output file.
type: str
param kwargs: other keyword arguments for pandas.to_csv

	
calculate_ancestry_fraction(population, sample=None)

	Returns the total fraction of genomic material inherited from
a given population.

	Parameters:

	
	population (int[#11]) – The index of the population to use.

	sample (int[#12]) – A specific sample node.

	Returns:

	the global ancestry fraction.

	
coverage

	The proportion of the total genome length with an ancestor in the
tspop.PopAncestry.squashed_table and tspop.PopAncestry.ancestry_table.

	
num_ancestors

	The number of ancestral haplotypes. Strictly less than or equal to the
number of inputted ancestral nodes.

	
num_samples

	The number of provided samples.

	
plot_karyotypes(sample_pair, colors=None, pop_labels=None, title=None, length_in_Mb=True, outfile=None, height=12, width=20)

	
Note

Diploid only for now.

Creates a plot of the ancestry tracts in a sample pair of chromosomes
using matplotlib.

	Parameters:

	
	sample_pair (list[#13](int[#14])) – a pair of sample node IDs in the PopAncestry object.

	colors (list[#15](str[#16])) – A list of pyplot-compatible colours to use for the ancestral
populations, given in order of their appearance in the tspop.PopAncestry.squashed_table.
If None, uses the default matplotlib colour cycle.

	pop_labels (list[#17](str[#18])) – Ancestral population labels for the plot legend. If None,
defaults to Pop0, Pop1 etc.

	title (str[#19]) – The title of the plot. If None, defaults to
‘Ancestry in admixed individual’.

	length_in_Mb (bool[#20]) – Whether or not to label the horizontal axis
in megabases. Defaults to True.

	outfile (str[#21]) – The name of the output file.
If None, the plot opens with the system viewer.

	height (float[#22]) – The height of the figure in inches.

	width (float[#23]) – The width of the figure in inches.

	Returns:

	a matplotlib figure.

	
squashed_table

	A pandas.DataFrame object with column labels sample, left, right, population.
Each row (sample, left, right, population) indicates that over the genomic interval
with coordinates [left, right), the sample node with ID sample has inherited
from an ancestral node in the population with ID population.
Population labels are taken from the specified census time.

	
squashed_table_write_csv(outfile, **kwargs)

	Writes the squashed table to a csv file.

param outfile: The name of the output file.
type: str
param kwargs: other keyword arguments for pandas.to_csv

	
subset_tables(subset_samples, inplace=False)

	Subsets the ancestry table and squashed table by sample.
Note: by default this returns a copy of the original tables.
To overwrite the original tables, set inplace=True.
(In this case, the function returns nothing).

	Parameters:

	
	subset_samples (list[#24](int[#25])) – The sample nodes to keep.

	inplace (bool[#26]) – Whether to overwrite the original tables.

	Returns:

	The subsetted ancestry table and squashed table (only if inplace=True).

	
total_genome_length

	Sequence length times the number of samples.

	
tspop.get_pop_ancestry(ts, census_time)

	Creates a tspop.PopAncestry object from a simulated tree sequence containing
ancestral census nodes. These are the ancestors that population-based
ancestry will be calculated with respect to.

	Parameters:

	
	ts (tskit.TreeSequence) – A tree sequence containing census nodes.

	census_time (list[#27](int[#28])) – The time at which the census nodes are recorded.

	Returns:

	a tspop.PopAncestry object

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#object

[#2]
https://docs.python.org/3/library/stdtypes.html#list

[#3]
https://docs.python.org/3/library/functions.html#float

[#4]
https://docs.python.org/3/library/stdtypes.html#list

[#5]
https://docs.python.org/3/library/functions.html#float

[#6]
https://docs.python.org/3/library/stdtypes.html#list

[#7]
https://docs.python.org/3/library/functions.html#int

[#8]
https://docs.python.org/3/library/stdtypes.html#list

[#9]
https://docs.python.org/3/library/functions.html#int

[#10]
https://docs.python.org/3/library/functions.html#float

[#11]
https://docs.python.org/3/library/functions.html#int

[#12]
https://docs.python.org/3/library/functions.html#int

[#13]
https://docs.python.org/3/library/stdtypes.html#list

[#14]
https://docs.python.org/3/library/functions.html#int

[#15]
https://docs.python.org/3/library/stdtypes.html#list

[#16]
https://docs.python.org/3/library/stdtypes.html#str

[#17]
https://docs.python.org/3/library/stdtypes.html#list

[#18]
https://docs.python.org/3/library/stdtypes.html#str

[#19]
https://docs.python.org/3/library/stdtypes.html#str

[#20]
https://docs.python.org/3/library/functions.html#bool

[#21]
https://docs.python.org/3/library/stdtypes.html#str

[#22]
https://docs.python.org/3/library/functions.html#float

[#23]
https://docs.python.org/3/library/functions.html#float

[#24]
https://docs.python.org/3/library/stdtypes.html#list

[#25]
https://docs.python.org/3/library/functions.html#int

[#26]
https://docs.python.org/3/library/functions.html#bool

[#27]
https://docs.python.org/3/library/stdtypes.html#list

[#28]
https://docs.python.org/3/library/functions.html#int

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tspop	

Index

 A
 | C
 | G
 | M
 | N
 | P
 | S
 | T

A

 	
 	ancestry_table (tspop.PopAncestry attribute)

 	
 	ancestry_table_write_csv() (tspop.PopAncestry method)

C

 	
 	calculate_ancestry_fraction() (tspop.PopAncestry method)

 	
 	coverage (tspop.PopAncestry attribute)

G

 	
 	get_pop_ancestry() (in module tspop)

M

 	
 	
 module

 	tspop

N

 	
 	num_ancestors (tspop.PopAncestry attribute)

 	
 	num_samples (tspop.PopAncestry attribute)

P

 	
 	plot_karyotypes() (tspop.PopAncestry method)

 	
 	PopAncestry (class in tspop)

S

 	
 	squashed_table (tspop.PopAncestry attribute)

 	
 	squashed_table_write_csv() (tspop.PopAncestry method)

 	subset_tables() (tspop.PopAncestry method)

T

 	
 	total_genome_length (tspop.PopAncestry attribute)

 	
 	
 tspop

 	module

 ### 0.0.2: April 2023
- Added subset_tables, ancestry_table_write_csv and squashed_table_write_csv.

0.0.1: July 2022
- Initial release

Footnotes

Examples

Note

Do later.

Footnotes

Pitfalls of ‘populations’

Note

This page is still in progress.

There are limitations to population-based notions of ancestry:

	Populations are often labels chosen by the researcher to make models more interpretable.

	There is always variation within populations.

	Different populations may be relevant in different epochs.

	Gene flow is often gradual and spatial in nature.

	(Consider the history of population genetics in humans:) eugenics happened.

An alternative is to think about ancestry on the level of individuals.

Footnotes

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 About tspop

_images/admixture.png
Generation 0 Generation 1 Generation 2

il
\
| |
\/
|

_images/local-global-ancestry.png
Global ancestry

60% 40%

10% 90%

70% 30%

Local ancestry

GATTTGCCAA

AACCTGTCGA

GATCTATTGG

_images/admixture-demes.png
|

g g g

(suonesaua6) obe aw

1200
1000
20

_images/tree-no-census.png
12

_images/tree-with-census.png
16

10

_static/file.png

_static/minus.png

